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EFFECTS OF LOCALIZATION AND FORMATION OF STRUCTURES DURING THE COMPRESSION 
OF A FINITE MASS OF GAS IN A PEAKING MODE* 

M.A. DEMIDOV and A.P. MIKHAILOV 

The problem of the adiabatic compression of a finite mass of gas with a 
cylindrical or spherical piston is considered. The pressure at the piston 

increases in the peaking mode according to the law P(O,t)= Po(t,m-t)ns,ng= 
-Zr (N + i)l(v + I+ N h- i)), i.e. it becomes infinite as t+tfoe,N= 0,1,2 is 
the symmetry index and y is the adiabatic index. The entropy of the gas 

is distributed over the Lagrangian mass coordinate m:s=In(a,~m-~,~*},~~, 
ml,6 are parameters. The existence of localization of hydrodynamic 
processes is shown for the case when N=O; in spite of the unlimited 
growth of pressure at the piston the perturbations do not penetrate beyond 
a certain finite mass of gas (the region of localization). Outside the 
region of localization the gas is not affected by the piston and remains 
in its initial state. The other effect consists of the formation (when 
a#O) of gas-dynamic structures, including complex .ones such as localized 
temperature or density maxima connected with the fixed mass of gas. 

*Prikl.I4atem.Mekhan.,50,1,119-127,1986 
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In the plane case the piston trajectory ensuring convergence of all characteristics at a 
single point was found in /l/. Analogous spherical and cylindrical centered compression waves 
were studied in /2-4/** (**See also: Kazhdan Ya.M. On the problem of the adiabatic compression 
of a gas by means of a spherical piston. Preprint Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 
89, 1975; Kazhdan Ya.M. Adiabatic compression of a gas by a cylindrical piston, Preprint 
Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 56, 1980.). A somewhat different approach to 
the study of shock-free compression in /5/ was based on constructing the solutions in terms 
of separable variables (a corresponding solution for the case of isentropic compression was 
obtained in /6/). This approach, unlike the solutions in characteristics, can be generalized 
to the case of media with different physical processes /6, 7/. In both approaches shock-free 
supercompression demands that the pressure at the piston should vary in a peaking mode, i.e. 
that it should become infinite on approaching the final instant of time. 

Below the selfsimilar solutions in separable variables are used to generalize the results 
of /7/ to the case of the adiabatic (non-isentropic) compression of a finite mass of gas. 
Two effects, not dealt with earlier, are also studied, namely the localization of the gas- 
dynamic perturbations and the appearance in the compressed matter of structures which appear 
as a result of the non-isentropic character of the medium and localization (inertia) of the 
gas-dynamic processes. The latter combines them with unsteady thermal structures /E-10/. 
The entropy distrubition in the gas can be caused, for example, by a shock wave moving with 
non-uniform velocity. 

1. Formulation of the problem. One-dimensional adiabatic gas flow is described 
by the set of equations 

where m is the Lagrangian mass coordinate, p, p, IL, r and the pressure, density, velocity and 
the spatial coordinate, and y,N are the adiabatic and symmetry indices. 

We will choose the adiabaticity integral in the form of a power function 

pp-V = a, 1 m - m, I* (1.2) 
are parameters). Formula (1.2) holds, in particular, for the entropy distribution 

?ih%d a shock wave front converging on the centre of symmetry,with m, = 0,6 = -2(l - a)/@a), 
where a is the selfsimilarity index (for y =6/sa = 0.667 /ll/). 

The solution of system (1.1) in separable variables has the form 

P h 4 = p. he - G” 27 (5)9 u (4 4 = u. hoe - tP u (5) (1.3) 
where n(E) and v(E) are dimensionless functions of the selfsimilar coordinate 

5 = mlm, (1.4) 
The parametersm,(with dimension of mass) and &depend on the constant p. (determined from 

the pressure mode atthepiston) and the entropy constant a,* (*See also: Demidov M.A. and 
Mikhailov A.P. Localization and structures in the adiabatic compression of a finite mass of 
gas in the peaking mode. Preprint Inst. Prikl. Matem., Akad. Nauk SSSR, MOSCOW, 8, 1983.). 

The following inequalities hold for the indices n, n,: 

n = -2~ (N + I)/(? + 1 + N (y - l))<O, n, = -nl(y (N + 1)) - 1 < 0 (I.51 
From (1.3), (1.5) it follows that the gas pressure and velocity are zero at the instant 

t = --oo,and all its particles are at infinity. When t -'ttoe (tfoe is the instant of peaking), 
the pressure, velocity and density of the gas all increase without limit, and the radius tends 
to zero. 

The spatial distribution of the gas-dynamic functions is described by the following 
system of selfsimilar equations: 

m$ [(- v)N v] + 15 - E, l*hc-‘Iv = 0, (- v)N -$ + v = 0, El = 2 W-J) 

the boundary conditions for which are given below. 

2. Compression of the half-space. We consider the problem of compressing a gas 
with a flat piston situated at the point m = O(E =O). The piston velocity is restricted when 

t < t/CC, i.e. O<v(O)<o0. Putting p (0, t) = p. (tloc - tP we obtain from (1.3) n(O)= 1. 
We seek solutions for which n(E),v(E)> 0 when E< &(Er>O is the selfsimilar coordinate 

of the compression wave front separating the moving gas from the unperturbed gas) and when 

E=E, 8 the velocity and pressure of the gas both become zero: n(t)= v(k)= 0. 
If the quantity &is finite, we have the localization effect. Indeed, when m> rnt = t/m,, 

the solution of the problem in question can be continued by means of the steady-state solution 
of the system (1.1): ~(m, t) = pa, u(m, t) = p (m, t) =O. Therefore, when m<mf (in the region 
of localization), the gas-dynamic functions increase in the peaking mode, and when m> mf 
cold matter at rest can be found (separated from the wave front by a contact discontinuity) 
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into which perturbations do not penetrate. 
The solution for the isentropic case (6 = m, =0) can serve as an example: 

n (E) = (1 - &/g)m/(v+r) 

(Y - WV% (v -I- 1) ' 

v(E) = --5c' (E), 0 < E < 5, = (2.1) 

The problem formulated is equivalent to a second-order differential equation (see (1.6)) 
with N = O),with boundary conditions 

n" - I E - El Idivn-liV = 0, n (0) = 1, - 00 < n' (0) < 0, (2.2) 

n (Et) = n‘ (&j) = 0 

The asymptotic forms of the pressure and velocity near the piston and the front g=& 
are given by the formulas 

( 

~-v(0)5+~h~*~vEP/2,B#0.v(O)=-n'(0) 

n (&4= 1 - v(O)t + y*(6 + y)‘'(6 + 2y)-'#b+Wv, (2.3) 
&=0,6>-y 

When 5 -+ &, three cases are possible: 

a) n (E) = ((E - Ma (Ef - L)bfv G9 (v - iI_' h + ~YVv+l) K (2.4) 
E-+Effh* 60 

b) n (E) = (a (a - l))-v'(v+l) 1 5 - Ei Ia, a = (6 + 2~) (y f 

1),'E + & = El, 6 > 1 - Y 

c) n (&) = (a (a - I))-V'(V+*)l E - & Ia, E -, &f = oQ, &<--2Y 

In cases b) and c) Eqs.CZ.4) yield an exact solution for problem (2.2) with 

1 cl 1 = &* = (a (a - l))v/@+w) ,(2.5) 

The entropy singularity cannot be situated within the mass of the compressed gas, i.e. 

El > Ei or El,<!. If on the other hand O<&< &t, then the density or temperature becomes 
infinite when E =& (see (1.2)) and a solution cannot be constructed in the region O<g< &,. 

The substitution 

Y = nl+l'V I & - El y/v, 5 = --n I E - &I I-‘/n’ (E) w3) 

makes it possible to study problem (2.21 in the phase space of the following first-order 
equation: 

The following 

and the values 

9 - ayax-l &z+1 
!dz p+Asy--9 o=$ + 1, A=sign(&- &I) 

point in the ZY plane corresponds to the piston: 

(5 (O), Y (0)) = ( I El 1-l v-' (O), I & I-““) 

(0, O), &#El, .=a 

(% “I = ( (- (da)-: 1 El* I""), &,= h, ~~ = o. 

(2.7) 

G3 

(2.9) 

correspond to a point on the front. Problem (2.7)-(2.9) is analysed using standard methods /12/. 

Let St # El, 00 (we consider the solution with a finite front , and the entropy singularity 
does not coincide with its position). For any y, 6 and 5, there exists a unique integral 
curve L in the quadrant x>O, y>O, emerging from the point (0, 0) of the front and satisfying 
the asymptotic forms (2.4), and we have on this curve ye = 2y/(y- 1) I* $- 11, (z), $ (I) X' -> 0 as 
G -+ 0. The solution sought' is part of theintegral curve L lying between the points of 
the front {O,O) and the piston (2.8). To construct the solution for given .$ = yO-li(Oa), we 
must choose the value of the independent parameter v(0) == I-'(0)~. lf(aa) (0) so that the point of 
the piston (2.8) lies on the integral curve L. 

Three cases are possible. 
1". fl =O (the entropy singularity is situated on the piston 6> -y /4/, x (0) =y(O) = 

+x0). The curve L connects the points (0,O) and (+ m,+ oo), i.e. a solution exists and is 
unique since x and y increase monotonically during the motion from the front towards the piston 
(Fig.1). 

El<0 a>0 (the entropy has no singularities in the gas in front of the piston 
5 (O), YZ$ < + 00). The field of integral curves is identical with that of case lo; therefore 
a solution exists and is unique. 

2ob. E1<O, a<0 (compared with case 2Oa, the entropy falls rapidly on moving away from 
the piston). When a(0, a singularity B ((- Aa)-', I fl* I-@“) appears in the quadrant x>O, 

y>O. the singularity is a node and becomes a focus when a<a* (Fig.21 a* = (1 - vy)/2. 
The relations x<x,<a~, y<y,< 00, xl = x,(6, y), y, = y,(6, y)hold on curve L. This 
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implies that a solution only exists when 1 El I< &** = yl-UWd (which represents a restriction 
on the entropy distribution) and when v (O)>ur** =rl-l)@~~) (restriction from below on the 
piston velocity, see (2.6)). When 1 &r I< El*** -Y,-"(~), the solutionis unique and ceases 
to be unique for &,*** < 1 E1 I < &**, since for any given value E1 from this interval there 
exists a spectrum of values v(O), corresponding to various positions of the point of the 
piston on the integral curve L (Fig.2). When I &, I+ I El* I, thenumber of solutions increases 
without limit and there are infinitely many solutions when 1 g, I = El*. 

Fig.1 Fig.2 

If the point B is a node, then the problem has at most two solutionswhen El*** < 1 El I< 
El**. In both cases the point B itself is not a solution (see 40 and So). 

A detailed description of the properties of a solution of type 2ob requires additional 
explanation. 

3". &r> & (the entropy singularity is situated before the compression wave front). 
3Oa. a< 1. The behaviour of the integral curve L is analogous to the case 2Oa; therefore 

a solution exists and is unique. Unlike the case 2oa, the curve L has an asymptotic form: 
y-t+00 as x+A-l, i.e. the piston velocity has a lower limit: v (O)>Aa I El I-‘_ 

3ob. a> 1 (just as in case 2ob, the entropy falls rapidly as the distance from the 
piston increases). A part ofthe field of integral curves containing the curve L, and therefore 
the properties of the solutions, are the same as in the case 2Ob. 

4O. Let us now consider the case &/ = 51. Let & = e, (the entropy singularity is 
situated at the front, 6>1--y from (2.4)b). A solution exists only when & = &r*, is 
unique and given by formula (2.4) b), and the point B, which represents the centre of focus, 
corres onds to it in the 

59. Finally, if 
zg plane. 

Ei = Cxl (the infinite mass of gas in front of the piston is compressed, 
from (2.4) c) we have IS<-2y), then a solution exists only when g, = -&r*, &< 2y, is unique 
and is given by formula (2.4) c). As in the solution 4O, the point B corresponds to it in 
the zy plane. 

In cases 2Ob and 3Ob the solution of the selfsimilar problem is not unique. For the 
given values y, 6, & a different number of solutions exists and when Et = - El* (&1 = El*) , 
we have simultaneously infinitely many solutions of the type 2ob and a.solution of the type 
50 (or, respectively, a set of solutions of the type 3ob and a solution of the type 4O). 
However, the solution of the problem of compressing a gas with a piston is unique, since 
various selfsimilar solutions have various corresponding spatial distributions of the gas- 
dynamic functions at the instant when the compression commences (which yield equal entropy 
distribution over the mass of thegas and correspond to the same law of pressure at the piston). 

Thus, if the medium (y) and the entropy distribution in it (6,&) are given, we can 
realize one or another mode of compression (I"-5"). In cases 2ob and 3Ob constraints appear 
on the parameter &, and in cases 2ob and 3" on the piston velocity v (0). In cases 1",4",5" 
the range of variation of the parameter 6 is restricted, and in cases 4O and 5O the quantity 

I E1 I = El*) is also fixed. 
The explicit form of system (1.6) implies that the pressure and velocity in the com- 

pression wave fall montonically on moving from the piston to the front. 
The degree of compression (heating) of the portion of the medium is determined by its 

entropy and the pressure within it. When the profile in monotonic, we can attain large 
densities (temperatures) in the compression wave in regions with lower pressure, thanks to 
the non-isoentropicity, and obtain the gas-dynamic structures, i.e. localized inhomogeneities 
of the density (temperature) connected with the fixed mass of the gas. 

Differentiating the expressions for the density (temperature) g (5) = nl'v I E - t I+ 
(e(E) = nl-llv 15 - frl*/V), we obtain the conditions for structures to exist in the compression 
wave 

nE ’ = A&n I E - El I-1 (axt’ = -A6nl E - $ I-‘(y - 1)-l) (2.10) 
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In the zg plane conditions (2.10) admitof a descriptive interpretation. The density 
(temperature) has a structure if the integral curve L intersects the straight line x = XI = 
-(AI!%)-1,(x = z, =-xl/(?- I)), and the number of maxima is equal to the number ofthepoints of 
intersection. Since the straight lines x=x1 and x=x, lie in different half-planes, we 
can have either density or temperature structures. 

1'. & = 0(6> -y). The solution always constains a unique structure (by virtue of the 
monotonicity of the curve L (a maximum) of the density when --y<S < 0, or of temperature 
(when 6> 0). The density (- y<S < 0) or temperature (6> 0) becomes zero when E = O(m = 0). 

2"a. E1<O,&> - 2~. For any 6<0 (or 8~0) a parameter g, can be chosen such, that 
the integral curve intersects (not more than once) the straight line x=x1(x = r,); therefore 
a unique maximum of the density (temperature) may exist. 

2ob. f1<0,6< -22y. The curve L intersects the straight line X=Xl<XB for all 
values of 6, and the number of points of intersection increases without limit as 6-P-w. 
Therefore the solution can contain an arbitrary number of density structures (maxima or minima). 

3"a. E1> &,,&<I - ~(0. The integral curve L intersects the straight line x =x1, there- 
fore El can be chosen such that the temperature has a single maximum in the compression wave. 

34,. E1>&,6>1 -y. There are no structures when 1 - y<6<0, and in the case 6 >0 
the solution may contain an arbitrary number of density structures (maxima and minima, just 
as in 2ob). 

4”, 5". There are no structures; the density and temperatures are monotonic. In case 4O 
the density g(E) is constant when 6 = 2 (see (2.4), b), i.e. a homogeneous compression of the 
extremities in the mass of gas in the peaking mode. 

El IV 
Problem (2.2) has a group of analytic solutions of the form n(E)= ~,IE-&~l'x(i -c,I&- 
which exist for the following values of 8 and y (the constants C,and C, are found from 

the boundary condition on the piston and Eq.(2.2)) : 

a) 8 = 0, Y = 0, p = 1, tl = 2y/(v + i), &a = 0 (2.11) 

b) IElI= El*, 0 = O= 0, Y- z,S<-2y or 671 --Y; 
c) 8 = (1 - 3y)/2, 8 = 0, fi = i/e, fJ = 2y/(y + 1) 
d) 6 = 1 - 3v, i3 = --i, v = i, e = zy/(,9+ i); 
(e)6= OL, f~ = (26 + 3~ - i)/((3~ - ~)Y/(Y + i) - i), e = *, 6: [$@)fj”‘= t3y “i~y3~-$ i) 

Incasea) the solution is giveninSect. (see (l.l), caseb) correspondstosolutions 4Oand 50. 
Casesc)-e) refertosolutionsofthetype 2O and 3O, 
onthequantity t. 

andtheappearanceof Structuresinthemdepends 
Theanalyticsolutions (2.11) confirmthegeneralanalysisandpossessthe 

characteristicproperties (localization, structures) of solutions oftheproblem in question. 
In the case of ml= O(E1 = 0), the formulation of the problem of the compression of gas by 

a flat piston in the peaking mode can be generalized to a wider class of selfsimilar solutions 
(LS- and KS-modes /13-15/. Here in the LS-modes (slower than the S-mode) the gas-dynamic 
processes are localized and structures appear (when s+o)_ 

3. Compression in cylindrical and spherical geometry. when N=l, 2 the gas 
is inside a cylindrical or spherical piston, collapsing as t+ttoe. The mass of gas and its 

radius are measured from the axis (centre) of symmetry of the system at which the velocity must 
equal zero. The coordinate m,,(~u=m,/m,) equal to the mass of compressed gas, corresponds 
to the piston. 

By virtue of the separation of variables (see (1.3)) v(6) = -R(E), i.e. the velocity 
becomes zero only at the centre of symmetry of the system E =O(m = 0). Thus it follows that 
we cannot construct solutions with the property of localization within the framework of the 
selfsimilar formulation given. Therefore we consider, for N=1,2, also the solutions for 
which the pressure at e =0 is not zero. The boundary conditions for system (1.6) take the 
form 

x (6,) = 1, I v&l) I< a, n (0) a 0, v (0) = 0 (3.1) 
and the last condition of (3.1) is satisfied automatically. 

As in the case when N =O, five types of solution may exist depending on the position 
of the entropy singularity: 
&,, N = 0); 4". &, = 0 

1". g, = E, (&I = 0, N = 0); 2". 61 = E, (& < 0, N = 0); 3". El < 0 (&I > 
(&I = E,, N = 0); 5". &, = 00 (&, = a~, N = 0). 

The solutions of type 5O correspond to compression of an infinite mass of gas inside a 
closed piston, and will not be considered further. 

As in the case when N = 0, 
lo and 4O 

the asymptotic forms of the velocity as E-E1 yield, in cases 
, the following constraints on the parameter 6: IO.87 - y; 4". 67 1 -y. 

When N&2 problem (1.6), (3.1) takes the form 

x" + (x')%-llv I E - El pv = 0, n (E,) = 1, IT‘ (&,) > 0, (3.2) 
n' (0) = 00, n (0) > 0 

The asymptotoic forms of the velocity and pressure as E-b=0 imply that solutions of 
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the type 4O, unlike when N = 0, exist only when the additional constraint &< 2y, is imposed, 
and this represents the special feature of the spherical geometry. 

As in the plane case, the SUbStitUtiOn 

g = x’-~‘VI E - gl pw3, 5 = I 1 E - &, p/n (&) 

reduces problem (3.2) to that of solving the following first-order equation: 

(3.3) 

x (0)= 0, then the point (0,O) in the Q/ plane corresponds to the centre of symmetry 
of the system (see (3.3)). A unique integral curve L emerges from this point, satisfying the 
asymptotic forms of problem (3.2). If on the other hand the pressure at the centre is not 
zero, curve L emerges from a fixed point on the axis E/ :yo E (n(O))*-WI &I I%‘+/ 3. The behaviour 
of the integral curve L in the ey plane determining the existence and properties of solutions 
is completely analogous to the case N =O,.i.e. solutions of all types (I"- 4") exist and 
have the corresponding properties (see Sect.2). 

As in the case N = 0, problem (3.2) has a set of analytic solutions of the form (2.11) 

a) 6 = 0, v = 0, fi = 1, 0 = 2y/(3y - 1), El = 0 (3.5) 

b) 1 EI I = EI* = (3~8 (a + l))Vl(w-*), p = 0 = 0, v = - a 

c) 6 = (5y - i)/2, v = 0, p = (3-f - 1)/(2y), 8 = i/B 

The existence of the density and temperature structures inthe solution (3.5) is governed 

by the parameters 8, y, E1, &,. The homogeneous compression corresponds to the solution (3.5) b) 
with 6 = 'Ia. 

When N = 1, the second equation in the initial system (1.1) becomes autonomous, and we 
will write its solution taking (3.1) into account, in the form 

P (m, t) = PO (b, - Vbo + m - mJ/mo (3.6) 

The pressure profile in the compressed medium does not depend on the medium (v) itself, 
nor on the distribution of entropy in it. It is fully defined by the boundary mode at the 
piston, and this in turn is the same for all media (it is independent of y). 

The general solution of the problem (1.61, (3.1) with N = 1 has the form 

I (E) = 1 - b + E (3.7) 
u (Q = -1 JI 6 - & pv (1 - Eg + ~)-ww 

g (E) = l & - b I*'v (1 - Ep + WY 

The integration constant for the velocity is chosen from the condition v(0) =O. Since 

n (0) = 1 - Ep > 0, it follows that the mass of the compressed gas has an upper limit m,<m,. 
This inequality represents a generalization of the result in /6/, where a solution of the type 
(2.1) was also obtained when 6 = m, = 0 for N = 0, 1,2. 

The conditions of existence and the properties of the solutions, and the presence of 
structures are found directly from (3.7). We note that when E, = &,* = 1, homogeneous compression 
occurs (see Sect.2) when 6=1. 

The special feature of cylindrical symmetry is the impossibility of constructing a solution 
of the type 2ob and 3ob, non-unique and containing complex density structures. This is related 
to the fact that the second equation of the system (1.6) is autonomous. 

Fig.3 Fig.4 Fig.5 

4. Results of numerical calculations. Numerical calculations carried out for 

system (1.1) using the pLOR.4/16/ program show, how a selfsimilar compression mode emerges 
from the non-selfsimilar (e.g. homogeneous) initial data. They also illustrate the stability 
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of the solutions constructed, and of the gas-dynamic structures, and show the method of 
exciting the structures under monotonic (especially homogeneous) initial data and monotonic 
boundary mode. The curves 0,1,&3,4 shown in Fig.3-5 correspond to the values tO= --1,O, %= 
PO = i, t = tl, t,. I*, t,, ttoe = 0, 0 = a/$. 

Fig.3 illustrates the emergence into the selfsimilar mode from the constant initial data 
when N=2. The sufficient condition for establishing the selfsimilarity (halting the half- 
width of the compression wave) is, that the pressure at the piston grows to approximately 100 
times its initial value (ml = 6 = 0, t, = -0.25, t,= -0.125, tt = -0.01. t, = -0.035). 

The stability of the 

t, = -0.02). 

t4 = -0.003. 
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ON THE THEORY OF REGULAR PIECEWISE-HOMOGENEOUS STRUCTURES WITH 
PIEZOCERAMIC MATRICES* 

O.A. IVANENKO and L.A. FIL'SHTINSKII 

A piecewise-homogeneous medium consisting of a piezoceramic matrix bonded 
by a doubly-periodic system of anisotropic fibres, dielectrics, is 
considered. The electroelasticity boundary value problems occurring here 
reduce to a SystemofFredholm integral equations of the second kind 
whose solvability is prwed. Concepts of mean mechanical and electrical 
quantities are introduced from energy considerations, between which a 
relationship is given by the equations of state of the structure macromodels. 
The algorithm constructed is realized numerically. Results are presented 
of computations of the average elastic, electrical, and piezoelectrical 
properties of the medium as a function of the cell microstructure. 

Models of elastic linearly-reinforced composite materials with 
isotropic and anisotropic components were examined for example, in /l-3/. 
A survey of the results in the area of electroelasticity boundary value 
problems can be found in /4/. 

1. Formulation of the problem. We consider a transversely isotropic piezoelectric 
medium (a crystal of the hexagonal 6 mm system, PZT-4, PET-5, etc. piezoceramic, prepolarized 
along the 2 axis), reinforced by a doubly-periodic system of identical anisotropic fibres 
along the y axis, referred to the crystallographic syz axes. The fibre transverse cross- 
section is a simply-connected domain bounded by a simple closed curve 1 with curvature satisfy- 
ing the Holder condition /5/. The fundamental periods of the structure are denoted by o1 and 

op(Im(o,/w,)>O) the domain occupied by the matrix by D, and 

12 
the domain occupied by the fibre in the unit cell II, by D,. 

For such an idealization in the plane of the transverse 
section we obtain an infinitely connected domain that is 
invariant under the group of translations T(z) = z + p, where 
P is the complex period (Fig.1). We shall assume the mean 
components of the mechanical stress tensor <%>* <%Z)? <a*> 
and the electrical intensity vector <E,), <E,> act in the 
structure. 

We will construct a model of a regular piezoceramic medium 
under the following additional assumptions: a) all fibres have 
identical physicomechanical properties and possess a plane of 
elastic symmetry perpendicular to the y axis; b) conditions 
hold for ideal electrical and mechanical contact between the 

Fig.1 fibre and the matrix. Under these conditions the fields of 
the mechanical stresses, the induction and intensity vectors 

of the electrical field possess the same symmetry group as does the domain D. 
The mechanical and electrical quantities in the matrix are defined by the formulas 


